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The effect of confinement on a microemulsion, a disordered, fluid phase with two characteristic length
scales, & the correlation length, and d the wavelength of oil and water density variations, is studied
within a simple Ginzburg-Landau theory. We find a qualitative difference between those systems which
contain a strong amphiphile as opposed to a weak one. As the distance between walls is increased in the
former, a series of first-order transitions occurs which, in principle, can continue without limit, while in
the latter, only a small number of such transitions are expected. Such transitions will be manifest in
discontinuities in the forces between the walls. In our model calculation, the boundary between strong
and weak amphiphiles is 27£/d =V 3, a value easily accessible experimentally.

PACS number(s): 68.15.+e, 68.10.Cr, 68.65.+g

1. INTRODUCTION

The effect of confinement between two walls on ordi-
nary, simple fluids has received much attention in recent
years. Significant changes in the fluid’s properties can
occur when the distance between walls becomes compara-
ble to some characteristic length of the system. For ex-
ample, the thickness of a wetting layer is such a charac-
teristic length. If capillary condensation occurs when the
thickness of the wetting layer is comparable to the dis-
tance between walls, the pressure at which it occurs
differs significantly from the equilibrium condensation
pressure [1]. If the walls favor different bulk phases, then
two-phase coexistence is greatly affected when these
lengths are comparable, and can be suppressed entirely
[2]. Another important length is the molecular size, as
each wall can induce layering that extends out into the
fluid to several such lengths. When the distance between
walls becomes of this order, such structures overlap,
causing an increase in viscosity of orders of magnitude.
Confined to sufficiently small spacing, the entire film be-
comes glassy or crystalline [3].

Besides these lengths, which characterize an ordinary,
‘simple fluid, an additional length becomes important in
complex fluids, such as bicontinuous [4] microemulsions
and polymer-copolymer melts. In such systems, correla-
tion functions show exponentially damped oscillatory
behavior [5]. The fluid appears to have internal structure
that is periodic, due to the tendency of the amphiphile to
order the other two components, and this new wave-
length is crucial in describing the properties of the sys-
tem.

The effect of confinement on amphiphilic systems has,
so far, been studied mainly in lamellar phases, in which
the order induced by the amphiphile is long ranged and
the isotropy is lost. As computer simulations show, the
transition from the ordered phase with lamellar parallel
to the walls is relatively unaffected by the confinement if

1063-651X/93/48(3)/1882(7)/$06.00 48

the spacing between walls is a multiple of the lamellar
spacing, whereas it is strongly suppressed if the wall dis-
tance is half odd-integer times the spacing [6]. It is found
experimentally [7] that, within the lamellar phase, the
forces between the walls oscillate as a function of their
separation, with a periodicity matching the lamellar spac-
ing. Within a period, the force need not be a smooth
function of distance, but can exhibit discontinuities. This
has been studied theoretically for systems of amphiphiles
[8] and copolymers [9]. The discontinuities are related to
the change in the number of layers between the walls
from n to n*t1 or n*2.

That macroscopic quantities, such as the force between
walls, reflect the properties of a bulk ordered phase
confined by them is not surprising. However, when the
confined phase is a microemulsion, which is also charac-
terized by a period d as well as correlation length £ but
yet is disordered, it is not clear what effect will be mani-
fest at the walls. It is this issue that we study here. A
one-component Ginzburg-Landau theory is employed
[10]. We find that there is a qualitative difference in the
behavior between strong and weak amphiphiles, with the
former giving rise to oscillatory forces between the walls
whose amplitude is damped exponentially with the sepa-
ration, while the latter are characterized by only a small
number of oscillations followed by a monotonic exponen-
tial decay. In the model, the sharp change in behavior at
finite separations is a consequence of a surface phase
transition that occurs in the semi-infinite system. In-
terestingly, this transition does not occur when the ratio
of the two lengths of the microemulsion 27§ /d vanishes,
as at the disorder line, or takes the value unity, as at the
Lifshitz line, but at an independent value, which in our
calculation is V3. This is easily attainable with a good
amphiphile [5,11].

Our paper is organized as follows. After introducing
the model in Sec. II, we derive in Sec. III a general ex-
pression for the density profile and the free energy of a
slab of oil, or water, or of middle phase. We study in Sec.
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IV the effect of confinement on the middle phase, with
particular emphasis on the free energy, the wall forces,
and the phase diagram. We summarize and discuss our
results in Sec. V.

II. MODEL

We employ an extension of the Ginzburg-Landau func-
tional introduced by Gompper and Schick [10],

F= [ d*r[c(®NV2D)P+g(P)VR)1+f(@)], (1)

where the scalar order parameter ®(r) is the difference
between the local concentrations of oil and water. For a
fluid confined between parallel walls, we assume that &
varies only in the direction perpendicular to them. We
also introduce surface fields 4, and «;, which couple to ®
and its first derivative, respectively. With these fields,
one can describe the preference of the walls for oil, water,
or amphiphile. We have for the total free energy then,

2 2
= ["dz (@) %‘ g(@) | L2 L r@) ]
— h(B(0)+ (L))
— | 42 ae
o dz z=0 dz z=L @

The order-parameter profile which minimizes (2) satisfies
the Euler-Lagrange equation
a |
=l

3
4—<I>d—<1>+3

d* ,
2c(<I>)dz4<I)+c (P) 220

d2 d2
—b—2g(P)—P
dz?

”n d
+2c" (D) ‘7 4

2

—g'(fb)!—d—cb +f(P)=0, (3)
dz

and the boundary conditions

d d d?
+ — —_) —_
h, 2gdz<b 2dz d2<Dyo ,
4)
d d d?
—h,+2g—P—2— |c—D =
hy gdz(p 2a’z lcdz2 L 0
and
2
K1+2cd—2d> =0,
dz 0
(5)
2
K1+2cd—2<l> =0.
dz L

The first integral of (3) is

2
—pd | d g d a*
U_-2d cdz<1> P | —3c d22<I>]
p 2
—g —~(I>‘ +f(P) (6)
dz
=const . (7)

These are general considerations. The particular mod-
el is defined by the specific form of f(®), g(®), and c(P).
In order to describe three-phase coexistence between an
oil-rich phase, a water-rich phase, and a middle phase in
the bulk, f(®) must have three minima. Furthermore,
the middle phase is a fluid with internal structure as re-
vealed by its structure factor S(g)~1/(cqg*+gg?
+1f"(®P)yiaae)> Which has a pronounced peak at a
nonzero value of g. This implies g <0 in the middle
phase. In contrast, the oil-rich and water-rich phases are
considered to be simple liquids, i.e., the structure factors
there are Lorentzian functions characterized by just one
width. Hence g is positive and ¢ can be ignored in that
region. Analytic calculations are readily performed util-
izing a piecewise quadratic approximation for f,

(®—1)P—a, ®>¢
(@)= 0@, |®|<é (8)
(®+12—a, ®<—9¢,
where ¢ is determined by requiring that f(®) be a con-

tinuous function. The functions ¢ and g are taken to be
piecewise constant:

((I))'— go > ICI)| <¢
857 1g,>0, otherwise , )
Co>0 > |q)| <¢
(D =
¢®) [Cz >0, otherwise . (10)

The general solution of the Euler-Lagrange equation
within one parabolic piece of f(®P) is

d=d=qg,e +aze_l‘z+a3ekzz+a4e_kzz+a5 ,
where (11)
4 172
A= 17 1-=2 ,

: c 2

where w =0, if |®|<¢, and equals unity otherwise. In
the oil-rich and water-rich phases, the A, , are real and
M=E=1/g, <<Ay=g,/c,. In the middle phase, the A;
are complex: A, =g, A,=7, with |g|*=wy/c,- The real
part of g is related to the usual correlation length
q,=Rel(q)=1/£, whereas the imaginary part of g gives a
wave number g,=Im(q)=2m/d. These different solu-
tions have to be matched at the points ¢ so that the
profile ®(z), its first derivative d ® /dz, and the invariant
Eq. (6) are continuous there. In the following, we will set
§=1 thus fixing the units of z.
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III. FREE ENERGY AND BULK STABILITY

As is shown in the Appendix, the free energy of a slab
consisting of a single phase, i.e., with ®(z) staying within
one parabola of f, is given by

7=fbl+C1(a>O+&>1 )2+C2(60_a’l )2

+C3(Dy+ D)2+ Cy(Dy— D)%, (12)
where [ is the thickness of the slab, f, is the bulk free-
energy density of the phase, and ®;, and ®,; are the
values of ®(z) and its second derivative at the edges of

the slab. Contributions from surface fields are ignored
for the moment. The coefficients C; are given by

—) A2 [tanh(Al/2) _ tanh(A,1/2)
b2 M-a A A ’
c.—2 A2 [ coth(A,l/2) _ coth(A,l/2)
Tam-a | A w0
(13)
@ 1

C, [A,tanh(A,l /2)—A tanh(A,l/2)] ,

T2 AAAZ-A2)

(3] 1
= — 2)].
C, 2 A M)[Mcoth(kzl/z) Aqcoth(A,l/2)]

In the oil- and water-rich phases, where the A; are real, it
is easy to show that all of these coefficients are always
positive. Furthermore, iffone makes the reasonable as-
sumption that in these two phases A; <<A,, i.e., these
phases are far from a disorder line at g, =V 4c, then the
properties of the phase are governed by just one length
A=&=1/g,, and, as stated earlier, the parameter c be-
comes unimportant. In this case, C; and C, turn out to
be very small compared to C,~=(w/2{)tanh({l/2) and
C,=(w/2§)coth({l /2). The situation is more interesting
in the middle phase. In terms of the real part g, and the
imaginary part g; of g =A,, the coefficients C; read

¢ =% 1
b2 4 (g2+g?)(coshg,l+cosq;l)
nhgq,/ sing;/
X |(3g2— g0 1 (3g2—g2) 2l | | (14
r ]
= 1
»* 4 (g2+g?2)(coshq,l+cosq;])
sinhg,/ sing;l/
q, q;

While C; and C, are still positive, this is no longer true
for C, and C,: As q;/q, becomes larger than 1, i.e., as
the system crosses the Lifshitz line and becomes a mi-
croemulsion (see [10]), C; and C, can become negative
for certain values of I. For g; /g, > V'3, a condition which
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is fulfilled for strong amphiphiles [5,11], C, and C, are
negative in the limit of infinitely large /. As C, and C,
are essentially inverse susceptibilities of the surface free
energy, which can be positive or negative, the fact that
they pass through zero indicates a surface phase transi-
tion. As a consequence of these negative coefficients in
the free energy, Eq. (12), the magnitude at the slab edges
of the profile (2) will be nonzero, so that the profile will
oscillate at the surface irrespective of the nature of the
confining surface. Recently, such oscillations have been
clearly observed at the microemulsion-air interface [12].
The implications for the confined system of the surface
phase transition in the semi-infinite system will be dis-
cussed in the next section. Before doing so, we note that
in order to be certain that the middle phase is stable for
values of the parameters at which we have examined it,
we have determined the phase boundary between lamellar
and middle phases. The manner of doing this is discussed
briefly in the Appendix.

IV. CONFINED MICROEMULSION

We now study the effect of confinement on the middle
phase. We consider a slab of it of thickness / at bulk
three-phase coexistence of a symmetric system. We must
minimize the free energy [see (2), (12), and (A2) and (A3)]

F=Fp+ 57&) , (16)
where

Fo=C(Dy+ D)2+ Co(Py— D, ) —a,(Dy+ D)) ,

:'7(1):(:3(&)0"*‘&)1 )2+C4((‘i)0“&)1 )2_(12(('1‘)0‘{"&’1) ’

and
4
a1=h1+K11|q(|2)Im ta“h(;lﬂ) ,
miq
Ky
a,=— Im(q tanh(ql /2)) ,
2 Im(g?) 7 7 )

under the constraint that ®;, and &, may not exceed the
values at the matching points T¢=+1/(1+1"w).

The free energy ¥ is easily minimized with respect to
&, and ®,. The values which minim’ = it are

o o G |2|4
Po=PiT4o TTrY,

and the minimum value is

| 4

1 g
Fo=e2 2 1
. 4C, 0 Im(g?)

Im(q tanh(ql /2)) .
The minimization with respect to ®; and ®,; is a little
more complicated. Assuming a;>0 for simplicity, one
finds four different solutions:
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2

—a?/4+4C,C,—2a,C,

(1) ¢y=0,= L g =_2

0 T gac, T a4c,

ot C,+C, St
(III) ®y=d,=1, Fu=4C,—2a,,
(IV) ®p=1, ®,=—1, F,=4C, .

Cc,+¢C, ’

(17)

Which particular solution applies depends on the coefficients C, , and a;:

(I) for a;/4<C,

C,C,>0=
(ITII) otherwise ,

(I) for |C,|l<a,/4<C,

c,>0, C,<0, C{+C,>0= {(IIl) for a;/4>C,

(18)

(IV) for a,;/4<|C,! ,

(III) for a,/4>(C,—C,)/2

therwise —
OHRETWISE™ V(1) for a,/4<(C;—C,)/2 .

The extension to a; <0 is straightforward. In the asymp-
totic limit / — o the coefficients take the values

3¢/ —q/
_ _E)_ r i
Cl,oo_CZ,oo_ 23 2+ 2\
q.(¢;+4q;)
) ) (19)
_ g +QI
al,oo_hl_Kl 2q

Consider first the case h; =k, =0, i.e., completely neu-
tral walls. Then a;=a,=0. Solution (II) never occurs;
solution (I) corresponds to F, =0, which means that the
values at the walls are the same as in the bulk so that the
profile is flat. In solutions (III) and (IV), the profile oscil-
lates. Figures 1(a) and 1(b) show the free energies related
to the states (I), (IIT), and (IV) for different amphiphilic
strengths. At small wall distances, solution (IV) is always
the one with lowest free energy, i.e., the order parameter
at the walls take maximum, opposite values. Intuitively,
this corresponds to one single sheet of amphiphile align-
ing itself parallel to the walls. As the wall distance / is in-
creased, one finds the behavior is qualitatively different in
systems with weak amphiphiles than in systems with
strong ones. When g;/q, < V'3, corresponding to a weak
amphiphile, the solution which minimizes the free energy
alternates from (IV) to (III) a few times and ends up in (I)
for large [/, i.e., the order-parameter profile is flat.
Beyond this distance, there is no indication in the free en-
ergy that additional amphiphile is entering the system in
a manner which varies periodically with the wall separa-
tion. In contrast when g;/q, > V3, corresponding to
strong-amphiphilic systems, the solution always alter-
nates between (III) and (IV) for any wall distance. The
amplitudes of the order parameter at the walls are always
maximal. Thus the insertion of amphiphile into the sys-
tem appears to occur periodically even in this fluid phase,
and is manifest in an infinite series of first-order transi-
tions.

Free energy

-1 L L 1 L ' n

0 2 4 6 8 10 12 14 16
Film thickness

0.6 T T T T T T

Free energy

s L

-1 FEY 1 1 L i
0 2 4 6 8 10 12 14 16
Film thickness

FIG. 1. Dimensionless free energy of a middle-phase film vs
dimensionless film thickness at wy=0.25, h; =k;=0 for (a) a
weak amphiphile (¢;=0.6, ¢,=0.4, 27§/d=1.5) and (b) a
strong amphiphile (¢;=0.8, ¢,=0.4, 27&/d =2.) Solid line cor-
responds to state (III), dashed line to (IV), dotted line to (I) (see
text for explanation). For a given film thickness, the state of the
film corresponds to that with the lowest free energy.



1886 F. SCHMID AND M. SCHICK 48

0.1 ¢ 4
0.05 f
9]
19
9]
o
o
W 0
—
—
o
=
-0.05
~-0.1
L L s . L s .
0 2 4 6 8 10 12 14 16

Film thickness
FIG. 2. Dimensionless forces between walls vs wall distance
for a strong amphiphile: w,=0.25, h; =k;=0, ¢;,=0.8, ¢,=0.4,
2wg/d =2.

If we now include the effect that the walls will favor
one component so that o, is not zero, then we see from
Egs. (18) and (19) that, for sufficiently large separations,
the system will cease to oscillate and the lowest state will
be (ITI) or (IV), depending on the sign of a;. This occurs
because the energy gain in having the order parameter
change sign at the walls decreases exponentially with dis-
tance, whereas the energy cost in having the wrong com-
ponent against a wall is independent of distance. In prin-
ciple, however, there is no limit to the number of first-
order transitions one can observe in strong-amphiphilic
systems if the walls be suitably adjusted. In weak-
amphiphilic systems, on the other hand, there is a limit
inherent in the fluid.

Presumably the most straightforward way to observe
this effect would be to measure the wall forces. Figure 2
shows these forces 7=0F /3l between the walls as a func-
tion of / in a strong-amphiphilic system. The singulari-
ties in the free energy manifest themselves as discontinui-
ties in the wall forces. Thermodynamic methods could
also be employed to probe the first-order transitions, as
could ellipsometry to study the discontinuous evolution
in film thickness.

V. SUMMARY

We have used a simple Ginzburg-Landau model for
mixtures of oil, water, and amphiphiles to study the effect
of confinement on a microemulsion. Our model is basi-
cally the same as the one introduced by Gompper and
Schick [10], with the difference that we assume the oil-
rich and the water-rich phases to be simple fluids such
that their structure function is well described by just one
characteristic length. We find a bulk first-order transi-
tion from the middle phase to the lamellar phase.

When confined between parallel walls, strong amphi-
philic systems should display behavior qualitatively
different from that of weak amphiphilic systems. As the
wall distance is increased, the former are predicted to un-
dergo a series of first-order transitions, which can be re-
lated to layers of amphiphiles entering the film sequen-
tially. If the walls are chosen properly, there is no limit
to the thickness of the microemulsion at which such tran-
sitions occur. In weak-amphiphilic systems, there are

only a few such transitions, and they occur at small sepa-
rations of the walls. The appearance of the transitions in
a slab of finite thickness is directly related to a surface
phase transition in the infinitely thick system of mi-
croemulsion. In this light, the two different behaviors are
quite reminiscent of two similar ones in adsorbed systems
[13]. In the case of a weak substrate, one observes just a
few layering transitions in a film of finite thickness even
when the film becomes macroscopically large at coex-
istence. On the other hand, for strong substrates, an
infinite sequence of layering transitions is observed. The
surface transition in the amphiphilic system we have con-
sidered is one from a state in which the bulk middle
phase prefers there to be no difference between the bulk
and surface order parameters, to one in which this
difference is maximal. It shows up therefore as a prefer-
ential adsorption of oil or water at the wall, brought on
not by wall forces, but by the presence in the middle
phase of the amphiphile which prefers such differences in
oil and water concentrations. Wall forces can enhance
the adsorption of course.

We found that weak and strong amphiphiles were dis-
tinguished by a particular ratio of their two characteristic
lengths, 27€/d =V'3, where £ is the correlation length
and d the oscillation length in the microemulsion. This is
certainly a model-dependent value, but that there exists
such a value we believe to be independent of the model.
It would be very interesting to observe such a series of
first-order transitions in a bicontinuous microemulsion,
and we indicated a few ways in which this could be done.
Lastly, we note that the walls need not be of the same
kind, so that one could simply observe a film of finite
thickness confined between some substrate and its own
vapor. From the form of the structure function obtained
from a scattering experiment on the bulk fluid, one could
determine the values of £ and d.
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APPENDIX

We consider a slab consisting solely of one phase, so
that ®(z) stays within one parabola of f(®). First we
calculate the free energy of one such slab in phase p (p
stands for oil o, water w, or middle phase m) with given
order parameter ®(z,;), ®(z,) and second derivative

d®/dz|, ., at the borders z; and z,. The order-
parameter profile &)(z)zcb(z)—d)b,p is

& A —A A -

S=age V+ae Vtasze Ftae ¥,
where a=(a,a,,a;3,a,) is connected to

. L ),
b=(D(z,),D(z,)D(z,),D(z,)) by M(z,,z,)a =b with
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122 2,27 2
A.2e }\.28
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e21 e 241

Az —Az
e22 e 242

—Ayzy
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(A1)

The parameters ¢ and g are constant within the slab. Using partial integration and the Euler-Lagrange equations
c®—g®d+w®=0, one obtains the free energy

F=(z,=2,)f +c{[PD]>~ [BD]2} +g[DD];?

=(z,~z,)f, +b7A4b

with

_ﬁ)__e/\‘lzl O~z
A Ay
—ck,ek’zl c?»le_)"z1
_(o_ellzz _ﬂe —Mzy
Ay Ay
cklexlz2 ——c)»,enklzz

_ﬂe"zzl 0 Az
Ay Ay
~c7k2e)"zz‘ chye ~han
o Ayzy o
A, A
chye - Ae ~hn

_A'zzz _

Hence ¥ is essentially a symmetric bilinear form in . Because it is symmetric, 4 can be replaced by the symmetric

part of A4,
A, 0 4, ©
0 A4, 0 A,
Aym= |4, 0 4, 0 |’
0 A4, 0 A,
with
A= o 1 _ 1
' ¢ | Adtanh[A(z,—z;)] Adtanh[A,(z,—2z,)]
o* -1 1
A2=_ 3 - + 3 . ’
c 7\,181nh[7\.1(22 —‘21)] )\,zslnh[)\.z(ZZ _Zl)]
A= —M + )
37 | tanh[Ay(z, —2,)] | tanh[A(z,—z))] |’
M A
A4:L‘ N - .
sinh[A(z,—2z,)] sinh[A,(z,—2z;)]

The diagonalization of the bilinear form finally yields Eq. (12) and (13). Note that the first derivatives d ®/dz at the
borders are given by

d(z)=(A;, —Ap Ay —A))M 10,2, —2;)

®(z,)=—(Ay, —Ap Ay —A))M 10,2, —2,)

®(z,)
®(z,)
D(z,) |’
d(z,)

®(z,)
b(z,)
d(z,)

D(z,;)

(A2)

(A3)
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To calculate the free energy of a lamellar phase, we consider a periodic array of such slabs consisting of different phases,
oil, middle, water, middle, oil, etc. Each slab of middle phase is of thickness /; and each slab of oil or of water is of
thickness /;. At the matching points between a slab p,, zC[z,,z,=z,;+1,] and a slab p,, 2C[z,,z3=z,+1,] the
order-parameter profile ®(z) and its first derivative (d /dz )®(z) must be continuous. Because the profile ®(z) in a slab
is determined by ®(z) and ®(z) at the borders in our formalism, ® itself can be made continuous very naturally. The
continuity of ® requires that ®(z,), ®(z,), and $(z;) fulfill

D(z,) =Dy, O(z,)~ Py,
b(z,) &(z,)
(A7, =7, A5, —A5h M, 10,2, —2) 8(z,)—9,, +(A% =A% A% — A5 )M, (0,25~ 25) ®(z,)~a,, |70
&(z,) b(z,)
(A4)

One can simplify this expression by using A; = <<A, in the oil- or water-rich phases. Once the free energy is expressed
in terms of the thicknesses /; and [, it is minimized with respect to them to determine the free energy of the lamellar
phase. It is then compared with that of the pure middle phase to determine which is stable. The lamellar phase is
stable if

Im(q “3coth(gly/2)) 2w, Im(q coth(qlo/2))(.I.>2

min |( —fb.m M1 +2wgtanh(l, /2)+ 2w o, (A5)
ol fb,w fb, 1 0 1 0 Im(l/qz) |q|4 Im(qZ)
with
_ Im(ql) _ JE— Im(q_lcoth(qlo/Z))
Im(q coth(gl,/2)) Vogtanh(ly/2)+ Im(1/g?)

In the general case in which ¢(®) is only piecewise constant, c,7c,, we find the transition between lamellar and middle
phases to be first order.

*Permanent address: Department of Physics FM-15, Uni-
versity of Washington, Seattle, WA 98195.

[1] R. Evans, J. Phys. Condens. Matter 2, 8989 (1990).

[2] A. O. Parry and R. Evans, Physica A 181, 250 (1991);
Phys. Rev. Lett. 64, 439 (1990); M. R. Swift, A. L.
Owczarek, and J. O. Indekeu, Europhys. Lett. 14, 475
(1991).

[31R. G. Horn and J. N. Israelachvili, J. Chem. Phys. 75,
1400 (1981); D. Y. C. Chan and R. G. Horn, ibid. 83, 5311
(1985); R. G. Horn, S. J. Hirz, G. Holziioannou, C. W.
Frank, and J. M. Catala, ibid. 90, 6767 (1989); P. A.
Thompson and G. A. Grest, Phys. Rev. Lett. 68, 3448
(1992).

[4] We draw the distinction between bicontinuous microemul-
sions and micellar microemulsions. In the latter, the mi-
celle can act as a component particle whose size provides a
characteristic length. See J. L. Parker, P. Richetti, P.
Kékicheff, and S. Sarman, Phys. Rev. Lett. 68, 1955
(1993). The structure of the bicontinuous microemulsion
is not characterized by micelles, but by sheets of surfac-
tant separating coherent regions of water from coherent

regions of oil.

[5] M. Teubner and R. Strey, J. Chem. Phys. 87, 3195 (1987).

[6] D. Chowdhury and D. Stauffer, J. Phys. (Paris) 49, 625
(1988); M. Kikuchi and K. Binder (private communica-
tion).

[7] O. Abillon and E. Perez, J. Phys. (Paris) 51, 2543 (1990);
P. Kekicheff and H. K. Christenson, Phys. Rev. Lett. 63,
2823 (1989).

[8] G. Gompper and S. Zschocke, Phys. Rev. A 46, 4836
(1992); G. Gompper and M. Kraus, Phys. Rev. E 47, 4301
(1993).

[9] M. S. Turner, Phys. Rev. Lett. 69, 1788 (1992).

[10] G. Gompper and M. Schick, Phys. Rev. Lett. 62, 1647
(1989).

[11]S. H. Chen, S. L. Chang, R. Strey, J. Samseth, and K.
Mortensen, J. Phys. Chem. 95, 7427 (1991).

[12] X-L. Zhou, L-T. Lee, S-H. Chen, and R. Strey, Phys. Rev.
A 46, 6479 (1992).

[13] R. Pandit, M. Schick, and M. Wortis, Phys. Rev. B 26,
5112 (1982).



